
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Estimation of telomerase enzymatic activity is an important issue in cancer biology. Previous studies 

mostly used TERT expression to estimate telomerase enzymatic activity, which remains debated. In 

this study, Noureen et al. developed a simple computational method named EXTEND to predict 

telomerase enzymatic activity using the expression of a 13-gene signature. This is an interesting 

study. However, I have some concerns about the rational of the computational method and the 

validation of the method. 

1. The authors used LGG data in TCGA to identify the 13 genes, the expression of which was used to 

estimate telomerase activity. They used ALT tumors as controls. Why only used LGG data? This is 

because the number of TERT tumors and the number of ALT tumors are comparable in LGG. For other 

types of cancers, the numbers of TERT tumors are much higher than the numbers of ALT tumors. I 

wonder whether the choice of the 13 genes is LGG specific. That is, the authors should examine 

whether the genes whose expression used to predict telomerase activity are similar among different 

types of cancers. In a previous study (Systematic analysis of telomere length and somatic alterations 

in 31 cancer types, doi:10.1038/ng.3781), TERT expression was reported to be associated with ~73% 

tumors, whereas ALT only accounts for 5%. Why not use the remaining 22% as controls. 

2. The authors compared the performance of EXTEND predictions with those estimated from only TERT 

expression in some cancer cell lines. EXTEND performed better in most cases. However, in the 

remaining parts of the manuscript, the authors did not directly compare EXTEND predictions with 

those estimated from only TERT expression in cancer samples, and non-neoplastic samples. The 

validation in the present form is not sufficient. 

3. The authors should add experiments to knockout some of the 13 genes to examined whether they 

affect telomerase enzymatic activity actually. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript „Inferring Telomerase Enzymatic Activity from Expression Data“ describes and 

characterizes a gene signature that predicts telomerase activity more accurately than the expression 

of the telomerase core elements TERT and TERC alone. The EXTEND scoring method is derived from 

comparison of ALT positive and TERT promoter mutated low grade glioma data, and then its ability to 

predict telomerase activity is tested on cell lines that were profiled with telomerase activity assays. 

In the next phase the score is computed for a large number of cancer transcriptomes and compared to 

other features such as cancer stemness. 

 

The method is made available as R package on an open repository 

The work is highly relevant and includes all necessary parts to validate the ability of EXTEND to 

function as a superior form of telomerase activity assay surrogate when compared to TERT expression. 

Some aspects regarding the method itself are not documented optimally. As the method relies on 

gene ranks it is most important to document which genes are included into this ranking. An example 

computation which reports how the score is computed for an individual case may help to clarify this 

point. Some of the issues below are clarified after reading the supplementary figures, but should 

already be addressed in the text. 

 

Major comments: 

- Multiple of the genes included into the signature are directly related to telomeres or cancer, while 

others have more obscure or unknown functions. Therefore, the genes that belong to the signature 

should be briefly discussed in the corresponding section of the manuscript. 

- Include the tables with the t-tests and the co-expression analysis that were used to identify the 

EXTEND gene signature as supplementary data. Order these table by p-value, respectively correlation 



coefficient, and mark the genes you selected for further analysis. 

 

Minor comments on Material and methods: 

- Add the names of the files you used for each analyses 

- Add the unit in which the gene expression was quantified in (e.g. TPM, FPKM etc.) 

- Line 15-16: state what varying “thresholds from 0.2 to 0.7” refers to. If these are correlation 

coefficients state with which method it was computed (e.g. Pearson) 

- How are the ranks of the signature genes computed exactly? What is the input value: gene 

expression, normalized gene expression, differential gene expression? Is in all datasets the number of 

genes in you compute the rank on the same? What gene model is used (GENCODE, ENCODE, RefSeq)? 

This information is relevant as readers who try to reproduce your work using a different gene model 

may end up with different rankings. 

- If possible present a formula that represents the scoring schema. 

- Line 131-133: The second sentences appears to be incomplete. 

- Is the scaling factor computed once, or is it recomputed for each new dataset? 

- Supplementary Table 1: This table is not easy to read as it is truncated and placed on two pages. 

This should 



Reviewer 1 comments  
 
Estimation of telomerase enzymatic activity is an important issue in cancer biology. Previous studies 
mostly used TERT expression to estimate telomerase enzymatic activity, which remains debated. In this 
study, Noureen et al. developed a simple computational method named EXTEND to predict telomerase 
enzymatic activity using the expression of a 13-gene signature. This is an interesting study. However, I 
have some concerns about the rational of the computational method and the validation of the method. 
 
We thank the reviewer for the positive comments.  
 
1. The authors used LGG data in TCGA to identify the 13 genes, the expression of which was used to 
estimate telomerase activity. They used ALT tumors as controls. Why only used LGG data? This is 
because the number of TERT tumors and the number of ALT tumors are comparable in LGG. For other 
types of cancers, the numbers of TERT tumors are much higher than the numbers of ALT tumors. I 
wonder whether the choice of the 13 genes is LGG specific. That is, the authors should examine whether 
the genes whose expression used to predict telomerase activity are similar among different types of 
cancers. In a previous study (Systematic analysis of telomere length and somatic alterations in 31 cancer 
types, doi:10.1038/ng.3781), TERT expression was reported to be associated with ~73% tumors, 
whereas ALT only accounts for 5%. Why not use the remaining 22% as controls? 
 
We thank the reviewer for raising this great question. The reason we chose LGG as our training cohort is 
that it has a large sample size for both TERT promoter mutant tumors and ATRX mutant tumors (ALT) 
(Supplementary Fig 2A), as the reviewer rightfully pointed out. Importantly, these two genotypic groups 
demonstrate strong mutual exclusivity suggesting they employ two distinct telomere maintenance 
mechanisms (Supplementary Fig 2B). While positive telomerase is commonplace in cancer, the only 
other tumor type in TCGA that has relatively abundant ALT cases is sarcoma (SARC), but the case 
number is nowhere near LGG (Supplementary Fig 2A). Moreover, SARC is a heterogenous group 
consisting of many disease entities such as synovial sarcoma, liposarcoma, myxofibrosarcoma etc. 
(PMID: 29100075). This lineage heterogeneity may significantly confound signature identification. We 
explained our rationale for using LGG in the first paragraph of the result section.  
 
The issue with using the 22% double wildtype (wt/wt) tumors (no detectable TERT expression, no 
ATRX/DAXX mutation) is that this group is likely an admixture of telomerase-driven and ALT-driven 
telomere maintenance mechanisms. In this study by us (Barthel et al. 2017), we found this wt/wt group 
has average longer telomeres in some cancer types but shorter telomeres in others. The absence of 
TERT expression in these tumors is not a reliable indication of its telomere maintenance mechanism 
because TERT is located in a region with high GC content, which negatively affects sequencing. In 
addition, these wt/wt tumors disproportionately come from indolent cancer types. Thus, without 
further experimental or other evidence, we felt there are too many confounding factors to control if 
using them as training set.   
 
To address the reviewer’s question whether this 13-gene signature is LGG specific, we correlated the 
expression of the 11 marker genes (excluding TERT and TERC) with TERT across TCGA cohorts. The result 
is shown below in Figure R1. In the figure, positive correlation is shown in red, and the bars on the right 
indicate how many of the genes pass p value 0.05 (the same criterion applied to LGG in signature 
identification). In the majority of cancer types, most markers show positive correlation with TERT, 
suggesting this signature is not specific to LGG. Across pan-cancer, all genes show positive correlation. 
However, we do observe in rare indolent cancer types such as cholangiocarcinoma (CHOL), kidney 



chromophobe (KICH) and Pheochromocytoma and Paraganglioma (PCPG), the correlations seem to be 
worse. The patterns for CHOL and KICH do not appear to be very distinct from other cancer types, thus 
the relatively smaller number of genes passing the threshold is likely due to their small sample sizes. 
PCPG has the highest incidence of double wildtype tumors (88%) in TCGA (see Fig 5A in Barthel et al. 
2017). The absence of TERT expression values likely contribute to this worse correlation. Nevertheless, 
the result clearly indicates that this signature is cancer type agnostic.  
 
We also gently remind the reviewer that cell lines used in our validation are from multiple cancer types 
including brain, lung, and bladder. In all three, EXTEND can predict telomerase activity thus 
substantiating its use in broad lineage contexts. 
 
In the revision, we added comments in the discussion to point out the possible limitation of EXTEND in 
indolent cancer types such as PCPG (second paragraph in Discussion). We also added Figure R1 as 
supplementary Figure 3 and added comments in the corresponding text (second paragraph in Results). 
We thank the reviewer for this insightful comment that has resulted in a strengthened manuscript.  
 

 
Figure R1. Correlation of TERT expression with 11 marker genes of the EXTEND signature across 32 
cancer types in TCGA. Color intensity of heatmap represents correlation coefficient, while the bar plot 
on right hand side represents number of genes passing p-value threshold of 0.05. The numbers on the 
left of the heatmap indicate sample size.  
  
2. The authors compared the performance of EXTEND predictions with those estimated from only TERT 
expression in some cancer cell lines. EXTEND performed better in most cases. However, in the remaining 
parts of the manuscript, the authors did not directly compare EXTEND predictions with those estimated 



from only TERT expression in cancer samples, and non-neoplastic samples. The validation in the present 
form is not sufficient. 
 
We thank the reviewer for acknowledging our cell line validation results. We did compare TERT and 
EXTEND in non-neoplastic sample analysis, and we apologize for omitting it in cancer sample analysis. In 
the revision, we have added them in the revised manuscript, see below.  
 
For non-neoplastic samples, we included both EXTEND scores and TERT expression in our results (Figures 
2A-C). We discussed extensively in GTEx data analysis how EXTEND scores differ from TERT expression 
using skin transformed fibroblasts, brain and testis tissues (see Figure 2A and line 158-164 in the initial 
submission). To further illustrate this, below is our Figure 2B showing EXTEND score and TERT expression 
of the heart tissue from prenatal stage to adulthood. EXTEND scores show a drop between 12th and 13th 
embryonic week, a pattern consistent with findings reported in previous publications (Cardoso-Moreira, 
M. et al.2019; Ulaner & Giudice, 1997), whereas TERT expression is not informative because it is hardly 
detected after 7 weeks.  
 

 
Figure 2B from the manuscript. EXTEND scores and TERT expression across human embryonic heart 
development. The left y-axis indicates TERT expression (blue) while the right y-axis represents EXTEND 
score (red). The lines are regressed by averaging samples from each age group. 
 
We used two cancer patient sample datasets, liposarcoma and neuroblastoma, for validation. The idea 
was that these cancer types have high incidences of ALTs thus the contrast in telomerase activity 
between ALT and telomerase positive tumors provides a basis for validation. The neuroblastoma data 
was obtained from Ackerman et al. science, 2018 (PMID 30523111). As we explained in the manuscript, 
neuroblastomas can be divided into tumors without telomere maintenance mechanism (TMM), ALT, and 
positive telomerase. The latter is further split into MYCN amplified, TERT expression high, and TERT 
rearrangement. The Ackerman study compared TERT expression and telomerase activity in 52 tumors, 
see panel A Figure R2. As expected, telomerase positive tumors have higher telomerase than ALT and 
tumors without TMM (p<2.2e-16). Interestingly, the TERT high group has a lower median telomerase 
activity than MYCN amplification group despite a higher average TERT expression. In our analysis, 
EXTEND scores recapitulate this discrepancy (Figure R2, panel B) showing lower scores for the TERT high 
group than MYCN amplified tumors.  We note that the difference in telomerase activity between the 
two groups in the Ackerman study did not reach statistical significance, likely due to very small sample 
sizes. However, the consistency between EXTEND and experimentally determined telomerase activity 



further substantiate our observations from cell lines that EXTEND is superior to TERT expression in 
predicting this important feature of the telomerase.  
 
 

 
 
In Figure R3, we provide side by side comparison between EXTEND and TERT expression for the 
liposarcoma dataset (Lafferty-Whyte, K. et al. PMID 19684619). The dataset consists of both cell lines 
and tumor samples. We conducted a pairwise comparison using t test. We found that both TERT 
expression and EXTEND separate ALT from telomerase samples, but EXTEND achieves a better 
separation (p value 7e-6 vs 0.003 for cell lines, 0.001 vs 0.009 for tumor samples). The reason is that 
variance is much higher for TERT expression than EXTEND scores. We emphasize that this dataset is not 
ideal to compare TERT and EXTEND because tumors were only broadly divided into ALT and telomerase 

 

 
 

 
 
Figure R2. (A) The top panel compares TERT expression (left) and telomerase activity (right) across 
neuroblastoma groups (n=52). This figure is copied from Ackerman et al. Science figure 2B (PMID: 
30523111) for reviewer’s reference. Note that despite a higher average TERT expression, the TERT 
high group by average has lower telomerase activity than the MYCN amplification group. (B) EXTEND 
scores recapitulate the pattern. Consistent with experiment data, scores of the TERT high group are 
lower than MYCN amplification group. We note that quantitative telomerase activity was not 
provided by Ackerman et al. other than the above image. In (B), we used all tumors with expression 
data (GSE120572) and TMM annotation (n=212).  

A 

B 



positive without quantitative telomerase activity. It is conceivable that both TERT and EXTEND can 
separate these two groups.   
 

 
 
 
We have added both Figure R2 and R3 to the revised manuscript as supplementary Figures S9 and S10.  
 
 
3. The authors should add experiments to knockout some of the 13 genes to examined whether they 
affect telomerase enzymatic activity actually. 
 
The 13-gene signature is collectively a marker of telomerase activity, as the reviewer is aware. In scoring 
the signature, we separate the signature into a constituent component (TERT and TERC) and a marker 
component (the remaining 11 genes) (line 110 in the first submission). We never claimed in our 
manuscript that any of the marker genes is functionally involved in regulating telomerase activity. In our 
discussion (line 308-309 in the initial submission), we reiterated that these marker genes “have no 
reported functional associations with the telomerase.” Thus, we respectfully argue that this suggestion 
is out of the scope of this study.   
 
 
 
  

 

 
Figure R3. Comparison of TERT expression (left) and EXTEND Scores (right) in Liposarcomas ALT and 
telomerase positive tumors (GSE14533). Both telomerase positive tumors and cell lines show 
significantly higher EXTEND scores and TERT expression than ALT samples. EXTEND achieves a better 
performance than TERT expression (p value 7e-6 vs 0.003 for cell lines, 0.001 vs 0.009 for tumor 
samples).  



Reviewer 2 comments 
 
The manuscript “Inferring Telomerase Enzymatic Activity from Expression Data” describes and 
characterizes a gene signature that predicts telomerase activity more accurately than the expression of 
the telomerase core elements TERT and TERC alone. The EXTEND scoring method is derived from 
comparison of ALT positive and TERT promoter mutated low grade glioma data, and then its ability to 
predict telomerase activity is tested on cell lines that were profiled with telomerase activity assays. 
In the next phase the score is computed for a large number of cancer transcriptomes and compared to 
other features such as cancer stemness. 
 
The method is made available as R package on an open repository. The work is highly relevant and 
includes all necessary parts to validate the ability of EXTEND to function as a superior form of 
telomerase activity assay surrogate when compared to TERT expression. Some aspects regarding the 
method itself are not documented optimally. As the method relies on gene ranks it is most important to 
document which genes are included into this ranking. An example computation which reports how the 
score is computed for an individual case may help to clarify this point. Some of the issues below are 
clarified after reading the supplementary figures but should already be addressed in the text. 
 
We thank the reviewer for acknowledging the significance of this work and our validation efforts, and 
we apologize for the lack of clarity in describing methods and data. In the revision, we have added more 
details, including mathematical description of the method, in Methods, and also added additional data 
per the reviewer’s suggestion. In addition, we added a diagram in Supplementary Fig. 1 to graphically 
illustrate the computing procedure. We think these changes improve clarity and readability. We thank 
the reviewer for prompting us to make these helpful changes.  
 
Major comments: 
 
1.  Multiple of the genes included into the signature are directly related to telomeres or cancer, while 
others have more obscure or unknown functions. Therefore, the genes that belong to the signature 
should be briefly discussed in the corresponding section of the manuscript. 
 
We have the following discussions on the signature genes. Interestingly, none of the signature genes 
except TERT seem to be well recognized cancer genes. Underlined texts were added to the manuscript 
in the revision.  
 
“Seven of the 13 genes were highly expressed in testis but low in other tissues. None of the signature 
genes except TERT was catalogued by the expert curated Cancer Gene Census (as of July 2020), though 
LIN9 and HELLS were recently implicated in cancer (PMID: 32054769 and PMID: 31541170). This 
suggests the signature is largely not cancer specific. Mutations in HELLS, a gene encoding a lymphoid-
specific helicase, cause the centromeric instability and facial anomalies (ICF) syndrome, a genetic 
disorder associated with short telomeres41. Another signature gene POLE2 was a subunit of DNA 
polymerase epsilon, a complex previously linked to telomerase c-strand synthesis (PMID: 26883631). A 
summary of the signature genes, including their tissue expression pattern, function, and expression 
pattern in LGG, was provided in Supplementary Table 1. Pathway enrichment analysis suggested an 
overrepresentation of the signature genes in cell cycle (FDR=1.95e-4), particularly S phase (FDR=0.01, 
Supplementary Table 2), a narrow time window when telomerase is active in extending telomeres42.” 
 



2. Include the tables with the t-tests and the co-expression analysis that were used to identify the 
EXTEND gene signature as supplementary data. Order these table by p-value, respectively correlation 
coefficient, and mark the genes you selected for further analysis. 
 
We screened all genes in the TCGA expression matrix (n=20501, downloaded from PanCan Atlas) to 
identify the signature genes. In the revision, we have included the 108 TERT co-expressed genes and 
their P-values, correlation coefficients and log2FC between TERT promoter mutants and ALT (ATRX 
mutants) in supplementary Table 1 with the signature genes highlighted.  
 
 
Minor comments on Material and methods: 
 
1. Add the names of the files you used for each analyses 

 
Done. 
 

2. Add the unit in which the gene expression was quantified in (e.g. TPM, FPKM etc.) 
 
Done. 
 

3. Line 15-16: state what varying “thresholds from 0.2 to 0.7” refers to. If these are correlation 
coefficients state with which method, it was computed (e.g. Pearson) 
 
Done.  

 
4. How are the ranks of the signature genes computed exactly? What is the input value: gene 

expression, normalized gene expression, differential gene expression? Is in all datasets the number 
of genes in you compute the rank on the same? What gene model is used (GENCODE, ENCODE, 
RefSeq)? This information is relevant as readers who try to reproduce your work using a different 
gene model may end up with different rankings. 

 
The algorithm starts with ranking genes based on their expression values in each sample (see 
updated method). Because this is ranking, it is insensitive to expression units or normalization 
procedures applied to the input dataset. As the reviewer pointed out, the size of the input dataset, 
i.e. the number of genes, impacts the ranks. In the algorithm, we normalize scores by the total 
number of genes of the input dataset. At times, not all signature genes are present in an input 
dataset, we thus also normalize the sum by the size of the presented signature in the dataset. This 
process relies entirely on the input data matrix. Certainly, if a different gene model system is used in 
RNAseq alignment, the expression matrix (number of genes, expression values etc.) will change so is 
the rank sum score. However, we don’t find this is a significant issue as we have used data derived 
from various gene models in our testing. For instance, TCGA used RefSeq for its RNAseq alignment 
(20,501 genes), whereas GTEx and CCLE both used GENCODE (both have >55,000 genes in 
expression data), but we did not see much difference in algorithm performance. In the initial phase 
of the algorithm development, we also tested gene filtering such as removing lowly expressed genes 
etc., the results virtually remained the same.  
 
We have added these discussions to Methods. 

 



5. If possible present a formula that represents the scoring schema. 
Done.  
 

6. Line 131-133: The second sentences appears to be incomplete. 
Revised.  
 

7. Is the scaling factor computed once, or is it recomputed for each new dataset? 
It is computed for each new dataset.  
 

8. Supplementary Table 1: This table is not easy to read as it is truncated and placed on two pages.  
We have adjusted the Supplementary Table 1. 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In the revised manuscript, the authors have significantly improved the manuscript and addressed my 

concerns. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The revision significantly improved the manuscript and all of my comments have been addressed. 

 

Regarding the mathematical description of the model in lines 394-399 I remain with a last comment: 

You switched to a vector calculation in line 396, which is a bit inconsistent with the lines 394 and 395. 

Changing the line 396 as follows ( '_' should denote subscript): ES_i = (delta V_const,i + V_marker,i) 

/ (N_g * N_m) , would make it clear that ES is computed for each patient i individually, in contrast to 

the computation of the scaling factor delta in the next line which is derived on the whole dataset. 



Reviewer #1 (Remarks to the Author):  In the revised manuscript, the authors have significantly improved the manuscript and addressed my concerns.  
We are grateful to Reviewer #1 for taking time to evaluate our work.    Reviewer #2 (Remarks to the Author):  The revision significantly improved the manuscript and all of my comments have been addressed.  Regarding the mathematical description of the model in lines 394-399 I remain with a last comment: You switched to a vector calculation in line 396, which is a bit inconsistent with the lines 394 and 395. Changing the line 396 as follows ( '_' should denote subscript): ES_i = (delta V_const,i + V_marker,i) / (N_g * N_m) , would make it clear that ES is computed for each patient i individually, in contrast to the computation of the scaling factor delta in the next line which is derived on the whole dataset. 
 
We have made the revisions suggested by the reviewer.  


